

Project Goals

- Lift Station Condition Assessment
 - o Determine consistent baseline condition of lift stations
 - o Identify assets needing immediate attention
 - Prioritize capital and operational improvements to extend asset life
- Electronic O&M Manuals for Lift Stations
 - o Develop centralized location of documentation
 - Provide access to electronic O&M manuals by operators in the field (tablets)

Project Challenges

- Project must be completed by September 30, 2017
- Collection of needed documentation
- Coordination across multiple departments
- Wastewater Operations
- Engineering & Planning
- Technical Services
 - Vibration Crew
 - Electrical
 - Instrumentation
- o Information Technology
- $_{\circ}$ Records

Level 1 – Desktop Review

- Review As-Builts and Shop Drawings
- · Review operational history and known maintenance issues
- Check the following:

TCEQ 217 influent pipe invert elevation compliance	10 of 22 lift stations meet this criteria
TCEQ 217 active wetwell volume formula compliance	3 of 22 lift stations meet this criteria
Variable speed wetwell volume at minimum flow	8 of 22 lift stations meet this criteria
TCEQ 217 force main flushing velocity > 5 feet per second	19 of 22 lift stations can produce required flow
Net Positive Suction Head (NPSH) Available vs. Required	17 lift stations adequate; 4 marginal; 1 are negative

Level 2 – Field Inspections

- Three Disciplines:
 - > Process/Mechanical
- > Electrical
- > Instrumentation & Control
- Limited Structural (District provided wetwell photos)
- HDR Standard Condition Assessment Forms Used
- Each Asset Scored for:
- Condition
- > Reliability
- > Performance/Capacity

Asset Types Inspected Include:

- Process Mechanical
 - > Pump
 - > Valve
 - > Piping
- Structural
 - > Wetwell Condition from Photos
- I&C
- > Primary Element
- > Controller (PLC, RTU, DCS)
- Computers, Software, Network
 Communication
- Radios and Associated Equipment

Electrical

- > Electric Motor
- > Engine Generator
- Uninterruptable Power Supply (UPS)
- > Variable Frequency Drive (VFD)
- > Transformer
- > Switchgear
- > Motor Control Center
- > Panelboard

Level 3 – Lift Station Rapid Assessments

- Look, listen, and feel for vibration/cavitation
- Check:
 - individual pump flow using pump or station meter
 - suction and discharge pressure
 - > pump level (machinist's level)
- 14 of 22 lift stations with vibration/cavitation issues
- 7 lift stations recommended for further vibration testing

Simple Vibration Test – Nickel & Penny Test

- Allowable vibration per Hydraulic Institute standards for these types of wastewater pumps is 0.34 inches/second
- If nickel stands, vibration < 0.1 in/sec
- If penny stands, vibration < 0.05 in/sec

Level 4 – Vibration Testing – 7 Lift Stations

- Determine Natural Frequency of each pump
 Measure each pump's operating vibration
 Determine if a Resonance is occurring (Natural Frequency within the operating range)
 - Identify any system related vibration
 > NPSH issue
 - > Pump operating off of curve
 - > Wetwell turbulence

Vibration Testing Reports Produced for the 7 Lift Stations

- 8 of 20 pumps tested had vibration > HI Standard
- 7 of 20 pumps tested had a Resonance
- Typical recommendations for pumps with vibration problems:
- > Reprogram SCADA to prevent VFDs from operating at Resonance speed(s)
- > Replace older pumps
- > Modify newer pumps to move the natural frequency out of the operating frequency range

Pump manufacturers can conduct a modal analysis to determine pump body weaknesses

Each Asset is Rated and Scored to Develop an Overall Asset Score – Example: Prairie Creek LS Proc/Mech

				Assessment Score			Criticality Score		Useful Remaining Life Score		
Asset ID	Asset Description	Cond	Rel	Сар	Total	Weighted Score (X 0.25)	Relative Criticality	Weighted Score (X 0.75)	Useful Remaining Life Score	Weighted Score (X 1.00)	Total Asset Score
			F	Process	Mechan	ical					
PMP000939	Pump No. 1	3	3	3	9	2.25	4	3.00	4	4.00	9.25
PMP000940	Pump No. 2	3	3	3	9	2.25	4	3.00	4	4.00	9.25
PMP000941	Pump No. 3	3	2	3	8	2.00	4	3.00	4	4.00	9.00
CKV000XXX	Pump No. 1 Check Valve	2	3	2	7	1.75	3	2.25	3	3.00	7.00
VLV001676	Pump No. 1 Gate Valve (Suction)	2	3	2	7	1.75	2	1.50	3	3.00	6.25
VLV001679	Pump No. 1 Gate Valve (Discharge)	2	3	2	7	1.75	2	1.50	3	3.00	6.25
CKV000XXX	Pump No. 2 Check Valve	3	3	2	8	2.00	3	2.25	3	3.00	7.25
VLV001677	Pump No. 2 Gate Valve (Suction)	2	3	2	7	1.75	2	1.50	3	3.00	6.25
VLV001680	Pump No. 2 Gate Valve (Discharge)	2	3	2	7	1.75	2	1.50	3	3.00	6.25
CKV000XXX	Pump No. 3 Check Valve	2	3	2	7	1.75	3	2.25	3	3.00	7.00
VLV001678	Pump No. 3 Gate Valve (Suction)	2	3	2	7	1.75	2	1.50	3	3.00	6.25
VLV001681	Pump No. 3 Gate Valve (Discharge)	2	3	2	7	1.75	2	1.50	3	3.00	6.25
VLV003826	Surge Relief Valve	2	3	2	7	1.75	2	1.50	3	3.00	6.25
VLV001683	Surge Relief Isolation Valve	2	3	2	7	1.75	2	1.50	3	3.00	6.25
PMP000XXX	Sump Pump No. 1	3	4	2	9	2.25	2	1.50	4	4.00	7.75
PMP000XXX	Sump Pump No. 2	3	4	2	9	2.25	2	1.50	4	4.00	7.75
VLV001682	Header Isolation Valve	2	2	2	6	1.50	2	1.50	2	2.00	5.00
NA	Above Ground Pipe	3	2	2	7	1.75	2	1.50	3	3.00	6.25

Develop Prioritized Improvements List for Each Lift Station – Example: Prairie Creek Lift Station

Asset Score	Discipline	Description	Timeframe (years)	Es Constr	stimated ruction Cost ^a
9.25	Process/Mech	Pump No. 1 Replacement (w/Motor)	0-5	\$	122,000
9.25	Process/Mech	Pump No. 2 Replacement (w/Motor)	0-5	\$	122,000
9.00	Process/Mech	Pump No. 3 Replacement (w/Motor)	0-5	\$	152,000
9.00	I&C	Wetwell Level Instruments	0-5	\$	20,000
7.75	Process/Mech	Header Iso GV (20-inch)	6-10	\$	28,000
7.25	Process/Mech	Pump No. 2 CV (14-inch)	6-10	\$	11,000
7.00	Process/Mech	Pump No. 1 CV (14-inch)	6-10	\$	11,000
7.00	Process/Mech	Pump No. 3 CV (14-inch)	6-10	\$	11,000
6.50	Electrical	MCC Replacement	0-5	\$	163,000
6.25	Process/Mech	Pump No. 1 Suction Iso GV (18-inch)	6-10	\$	24,000
6.25	Process/Mech	Pump No. 1 Discharge Iso GV (14-inch)	6-10	\$	11,000
6.25	Process/Mech	Pump No. 2 Suction Iso GV (18-inch)	6-10	\$	24,000
6.25	Process/Mech	Pump No. 2 Discharge Iso GV (14-inch)	6-10	\$	11,000
6.25	Process/Mech	Pump No. 3 Suction Iso GV (18-inch)	6-10	\$	24,000
6.25	Process/Mech	Pump No. 3 Discharge Iso GV (14-inch)	6-10	\$	11,000
6.25	Process/Mech	Surge Relief Valve (8-inch)	6-10	\$	16,000
6.25	Process/Mech	Surge Is o GV (8-inch)	6-10	\$	4,000
6.25	Process/Mech	Exposed Piping Recoating	0-5	\$	30,000
5.75	Structural	Wetwell Coating	0-5	\$	119,000
5.75	Structural	Bypass Pumping for Wetwell Coating	0-5	\$	120,000

Ranking by Condition:

Ranking by Criticality:

	Avera	Total			
Lift Station Name	Process/ Mechanical	Electrical	I&C	Structural	Condition Score
Plano Spring Creek #1	8.29	8.94	6.69	6.50	30.42
Lower White Rock Creek	6.98	7.79	5.81	6.25	26.83
McKinney at Wilson Creek	6.67	5.67	6.29	8.00	26.62
Lakeside	7.32	5.25	6.44	6.50	25.51
Buffalo Creek	6.63	5.93	6.57	5.75	24.89
Indian Creek	6.46	5.47	5.85	6.50	24.29
Prairie Creek	6.99	6.13	5.34	5.75	24.20
Preston Road	6.38	5.50	5.66	6.50	24.03
Beck Branch	6.63	5.52	5.29	6.50	23.94
Plano Spring Creek #2	5.62	5.86	5.92	6.50	23.90
Lower Rowlett	6.67	5.73	5.23	5.75	23.38
Lower East Fork	5.93	6.03	5.96	5.25	23.18
Upper White Rock Creek	6.43	5.32	4.78	6.50	23.02
Upper Rowlett	6.45	4.97	5.06	6.50	22.98
Renner Road	6.42	5.80	5.00	5.75	22.97
Upper Cottonwood	6.54	4.50	4.97	6.50	22.51
Princeton	6.03	4.70	5.61	5.75	22.10
Richardson Spring Creek	6.16	5.14	4.98	5.75	22.02
Forney	5.63	5.19	5.14	5.75	21.71
Dublin Road	5.19	5.15	4.77	5.75	20.85
Wilson Creek	5.46	5.00	4.73	5.00	20.18
North McKinney	5.42	4.77	4.73	4.75	19.67
Average	6.38	5.65	5.49	6.08	23.60

Lift Station Name	System Criticality	Weighted Criticality Score (x3)
Preston Road	5	15.00
Beck Branch	4	12.00
Lakeside	4	12.00
McKinney at Wilson Creek	4	12.00
Lower White Rock Creek	4	12.00
Plano Spring Creek #2	4	12.00
Upper White Rock Creek	4	12.00
Buffalo Creek	3	9.00
Indian Creek	3	9.00
Lower Rowlett	3	9.00
Upper Rowlett	3	9.00
Richardson Spring Creek	3	9.00
Forney	3	9.00
Upper Cottonwood	3	9.00
Princeton	3	9.00
Dublin Road	3	9.00
Prairie Creek	2	6.00
Lower East Fork	2	6.00
Renner Road	2	6.00
Wilson Creek	2	6.00
North McKinney	2	6.00
Plano Spring Creek #1	1	3.00
Average	3.05	9.14

Combined Condition/ Criticality Ranking

- Results in prioritized, systemwide lift station improvement needs
- These needs, combined with growth/capacity needs, can be considered in annual CIP planning

Lift Station Name	Condition Score	Criticality Score	Total	OPCC for Recommended Improvements
Preston Road	24.03	15.00	39.03	\$4,644,000
Lower White Rock Creek	26.83	12.00	38.83	\$2,157,000
McKinney at Wilson Creek	26.62	12.00	38.62	\$2,015,000
Lakeside	25.51	12.00	37.51	\$533,000
Beck Branch	23.94	12.00	35.94	\$691,000
Plano Spring Creek #2	23.90	12.00	35.90	\$782,000
Upper White Rock Creek	23.02	12.00	35.02	\$1,908,000
Buffalo Creek	24.89	9.00	33.89	\$812,000
Plano Spring Creek #1	30.42	3.00	33.42	\$2,554,000
Indian Creek	24.29	9.00	33.29	\$978,000
Lower Rowlett	23.38	9.00	32.38	\$3,744,000
Upper Rowlett	22.98	9.00	31.98	\$1,477,000
Upper Cottonwood	22.51	9.00	31.51	\$877,000
Princeton	22.10	9.00	31.10	\$672,000
Richardson Spring Creek	22.02	9.00	31.02	\$70,000
Forney	21.71	9.00	30.71	\$110,000
Prairie Creek	24.20	6.00	30.20	\$1,144,000
Dublin Road	20.85	9.00	29.85	
Lower East Fork	23.18	6.00	29.18	\$215,000
Renner Road	22.97	6.00	28.97	\$1,232,000
Wilson Creek	20.18	6.00	26.18	\$51,000
North McKinney	19.67	6.00	25.67	
Average	23.60	9.14	32.74	\$1,333,300
Total				\$26,666,000
Total High Priority				\$12,730,000
Total Medium Priority				\$11,184,000
Total Low Priority				\$2,752,000

Operational Recommendations to Increase Asset Life

- Final Report also provides general operational recommendations for:
 - > Wetwell operational levels
- > NPSH guidelines
- > Pump cycling
- > Vibration (identify and prevent resonance)
- > Force main flushing velocities
- Final Report also provides specific operational recommendations for each lift station

O&M Manual Content per EPA: "Considerations for the Preparation of O&M Manuals"

- 1. Description of operation and control
 - > Unit processes/equipment
 - > Normal and alternate operations
 - > Automation
- 2. Maintenance
- Design attributes / capacity 3.
- 4. Safety
- 5. Staffing and responsibilities
- 6. Testing and analysis
- Records and recordkeeping 7.
- Permit information 8.

Advantages of Electronic O&M Manuals

Typical Information Management System:

- One master copy resides on server
- Full access in the field
- One-click access to:
 - Equipment manuals > Reports

drawings

Photos

- Construction Records
 - SOPs
 - > Safety info.
- · Version control: easily updated each time a change is made to the facility
- Can "surf" the facility for information
- Helps to address "Brain Drain" as experienced employees retire

	son Creek Figures
Graphics	
System Relationship Figures	
TMWD System Map	
EFIS Bubble Map - Draft	
pelines Into / Out of Pump Station	
rocess Flow Diagram	
&IDs - 2011 Wilson Creek Lift Station Project No	140
&IDs - 2015 Wilson Creek Lift Station Project No	348
ite Plan Drawings	
ite Plan Drawings - 2011 Wilson Creek Lift Statio	n Project 140
lan and Section Drawings	
lan and Section Drawings - 2011 Wilson Creek L	ift Station Project 140
Net Well Figure	
Vet Well Pump Start/Stop Levels	
lectrical One-Line Drawings	
one Line Drawings - 2011 Wilson Creek Lift Statio	on Project 140
Record Drawings	
ecord Drawings - 2011 Wilson Creek Lift Station	Project 140
Conformed Drawings - 2015 Upper East Fork Inte mprovements Project No 348	rception System Supervisory Control & Data Acquisition System

	Wilson Creek	Equipme	nt
Equipment	Maximo Asset ID	Data	Description
Sewage Lift Pumps	·		
Manufacturer's Website	PMP002039-Lift Pump 1	Quantity	Two
0&M Manual	PMP002040-Lift Pump 2	Location	Dry well
Pump Data		Manufacturer	Fairbanks Morse
		Model	2446
		Туре	Non clog œntrifugal
		Capacity	12.5 mgd, (8680 gpm @ 151 TDH
		Horsepower	500
Pump AFDs			
/anufacturer's Website	VFD000184	Quantity	Two
0&M Manual	VFD000185	Location	Electrical room
		Manufacturer	Schneider Electric
		Model	Altivar 61
		Туре	Adjustable frequency drive
		Horsepower	600
Pump Flowmeters			
Manufacturer's Website	MET000045 - Meter 101	Quantity	Two
O&M Manual	MET000060 - Meter 102	Location	Pump discharge piping
		Manufacturer	Endress + Hauser
		Model	Promag W
		Туре	Electro-magnetic
		Size	20"

eOM – Operation and Control

Lift Station Control

Lift Station Control The Wilson Creek Lift Station is programmed to operate in a lead-lag configuration. The set-points for the lift station are programmed into the control system and can be viewed at the display panel. The lead pump is the first pump to nun when the wet well reaches the programmed set-point elevation. Adjustable speed drives (AFEDs control the speed (and therefore the pumping nearbol of the pumps in order to romaintain the wet well level set-point. As the wet well level increases above the set-point, the AFD will increase the speed of the pump. As the wet well level decreases the level elevel set-point, the AFD decreases the pump periods of lower flows, the lead pump is configured to shut off when a low level wet well elevation is reached. During high flow events, the lag pump starts on rising wet well evel if the lead pump can not maintain wet well elevel set-point. As the two pump operation causes the level in the wet well level to even both pumps prunning at the pump off set-point. The lead pump will start again when the wet well level increases to the lead pump start set-point.

If the wet well level continues to rise after both the lead and lag pump are operating a full capacity, a programmed high level alarm is activated to provide notification to operators.

To maximize the service life of the lift pumps and evenly distribute long-term wear, the lead pump is automatically rotated by the PLC.

The instrumentation is using the top of the wet well floor as the reference (or zero) point. See wet well figure. Chandrad Onen

SOP Placeholder			
Control Strategies	P&IDs		
Sewage Pumps Control Narrative	Station P&IDs		
Wilson Creek Lift Station Operational Set	Points		
Wet Well Operational Control Settings	Programmed Level Se	t Points	
Wet Well Operating Level		15'	
Lead Pump ON		15'	
Lag Pump ON		19'	
Stop All Pumps		12'	
High Level		19.5'	
Critical High Level		20'	
Low Level Lockout (Generated in PLC)		11'	

eOM – Routine Maintenance

Wilson Creek Routine Maintenance

Routine Maintenance

The Wilson Creek Lift Station equipment and related components, referred to as assets, are catalogued in MAXIMO. Routine maintenance activities required on lift station assets are presented in the table below along with MAXIMO Asset ID and the recommended frequency for each routine maintenance activity.

MAXIMO Asset/ Eqpt Description	MAXIMO Asset ID	Routine Maintenance	Recommended Frequency
Lift Pump 1	PMP000978	Grease lift pumps	Monthly
Lift Pump 2	PMP002089	Grease lift pumps	Monthly
Lift Pump 1 Motor	MTR000931	Grease lift pump motors	Every 6 Months
Lift Pump 2 Motor	MTR002224	Grease lift pump motors	Every 6 Months
Emergency Generator	GEN000070	Generator, annual inspection and load test	Annually
Emergency Generator	GEN000070	Generator, run and check generator	Monthly
Emergency Generator	GEN000070	Generator, take oil sample	Every 6 Months
Odor Control Unit	PNL000826	Check for proper operation	Monthly
Surge Relief Valve		Check for leaks and bypassing	Monthly
Exhaust Fan EF-1	FAN000136	Fan and belt checks	Every 3 Months
Supply Fan SF-1	FAN000137	Fan and belt checks	Every 3 Months
Flowmeter	MET000045	Quarterly flow meter calibration	Every 3 Months
Flowmeter	MET000060	Quarterly flow meter calibration	Every 3 Months
Radar Level Indicator		Calibrate	Annually
Gas Detector	GDS000056	Bi-annual gas detector calibration	Every 6 Months
Cac Dotector	CD5000057	Ri appual and detector calibration	Evony 6 Months

- 014					
eOiv	I — IVI	Iscel	lan	eous	5

Wilson Creek Miscellaneous

Studies and Reports	
Vibration Report 1	
Vibration Report 2	
Condition Assessment Report	
Miscellaneous Mechanical C	D&M Manuals
Valve O&M (Gate valves, check	valves, knife valves)
Miscellaneous Electrical O&	M Manuals
Distribution Switchboards	
Dry Type Transformers	
Panelboards	
Motor Controllers	
Endosed Circuit Breakers and D	Disconnect Switches
Instrumentation (Flowmeters, l	evel sensors, SCADA, Radio)
Miscellaneous HVAC O&M M	lanuals
Placeholder	
Placeholder	

