

Not Your Father's TCEQ Model

A Year in the Life of a Bay

John Byrum, City of Corpus Christi Ernest To, Ph.D., P.E., Alan Plummer Associates, Inc.

Introduction

Oso Water Reclamation Plant (WRP)

- Began operation in 1943
- Largest wastewater plant in Corpus Christi
- Permitted discharge of 16.2 MGD
- Average discharge of ~ 12 MGD

Background: Typical Permitting Process

- Texas Commission on Environmental Quality (TCEQ) responsible for issuing Texas Pollutant Discharge Elimination System (TPDES) permits.
- Dissolved Oxygen (DO) Model is used to identify effluent limits protective of DO water quality standard.
- Typical static model represents a single, critical condition.

Background: Oso WRP Permit Modeling

- In 2013, Oso WRP permit was up for renewal.
- TCEQ was concerned that static model would be too simplistic, not representative.
- City initiated efforts for a more complex, representative model – a dynamic model.

Steps to Develop Dynamic Model

1 Identify Key Components

Steps to Develop Dynamic Model

2 Collect Data: Bathymetry

Collect Data: Continuous DO, Temperature and Salinity

² Collect Data: Bi-weekly Nutrients

- Bi-weekly sampling of
- Ammonia
- Nitrate
- Orthophosphate
- Chlorophyll-a
- TSS
- etc.

Steps to Develop Dynamic Model

Model Grid and External Flows

3

RED = 100% BDPS + Oso Creek

BLUE = 0% BDPS + Oso Creek

RED = 100% CC Bay water

BLUE = 0% CC Bay water

RED = 100% OWRP effluent

BLUE = 0% OWRP effluent

Steps to Develop Dynamic Model

Model Calibration

Steps to Develop Dynamic Model

5

Ran model scenarios to identify permit limits

• Oops! No permit limits work.

- Most stringent of limits don't work.
- Not even no-load model meets daily minimum DO standard

Run Model Scenarios: Comparison with and without discharge

Observations from No-Load Modeling

Temperature and salinity cause lower DO saturation.

- Diurnal fluctuations are widest:
- In Blind Oso; • In Summer

Greatest amounts of vegetation are in Blind Oso.

Driver on the minima is aquatic vegetation, especially in Blind Oso.

Basic Characteristics of Oso Bay

- Semi-tropical climate
- High salinity
- Shallow
 - Large tidal flats, especially in Blind Oso

- Extensive aquatic vegetation
- Large diurnal DO swings

Segment	DO Standards (mg/L)		
	Daily Average	Daily Minimum	
Oso Bay	4.5	3.5	

Laguna Madre

- Semi-tropical climate
- High salinity
- Shallow
- Extensive aquatic vegetation
- Minimally impacted by discharge

Laguna Madre was used as reference waterbody for UAA

Segment	DO Concentrations (mg/L)		
	Daily Average	Daily Minimum	
Laguna Madre (Summer)	4.8	1.6	
Oso Bay (Summer)	4.2	1.9	

TCEQ, 2010, "Development of Revised Dissolved Oxygen Criteria for Oso Bay and Laguna Madre"

Recommendation

- Even under no-load conditions, model showed DO not meeting existing standards in Blind Oso during the summer
- Because of physical differences
 - Split Oso Bay into Blind and Main Oso WQ segments

Because of seasonal differences

- Split period of application of standards by season
 - Summer = March to October
 - Winter = October to March

Segment	Summer DO Standards (mg/L)		Winter DO Standards (mg/L)	
	24-hr Average	Daily Minimum	24-hr Average	Daily Minimum
Oso Bay (Existing)	4.5	3.5	4.5	3.5
Blind Oso (Proposed)	4.0	1.5	4.5	3.5
Main Oso (Proposed)	4.5	3.5	4.5	3.5

- A comprehensive, year-long data set of Oso Bay was collected
- Based on the data, a dynamic DO model was developed to represent the physical, chemical and biological mechanisms in Oso Bay
- Simulation of the no-load scenario has led to the identification of recommended site-specific DO standards

- Recommended DO standards are posted for adoption by TCEQ in February.
- (Stay Tuned!)

www.apaienv.com

Thank you!

John Byrum JohnByr@cctexas.com Ernest To eto@apaienv.com Peggy Glass pglass@apaienv.com Logan Burton loganb@lnvinc.com

surveyors

ENGINEERS AND SCIENTISTS

RESEARCH INS FOR GULF OF MEXICO STUDIES

RPS