Centrate Treatment: Lessons Learned in the Full-Scale AnitaMOX[™] Startup at Denver MWRD

Stantec

Art K. Umble, PhD, PE, BCEE Vice President Global Wastewater Practice Leader

Texas Association of Clean Water Agencies March 23, 2018

Outline

- First Principles: Deammonification
- Project Overview
- Startup Sequence
- Modes of Operation
- Performance Data

Conventional Nitrification/Denitrification

3

Deammonification

- Oxygen Requirement Reduction
- External rbCOD Requirement Eliminated

4

Stantec

Deammonification Configurations

- Sequencing Batch Reactor (SBR)
 - World Water Works DEMON®
 - Suez Cleargreen™
- Moving-bed Bioreactor (MBBR)
 - Kruger ANITAmox[™]
- Granulated Sludge
 - Paques Anammox®

Metro Wastewater Reclamation District

Stantec

Robert W. Hite WRF Site Layout

Breaking the Nitrogen Recycle Load

Sidestream Deammonification: ANITAmox™

Baseline Design Criteria

AnitaMOX Design			
Parameter	Value	Units	
Centrate Flow (Peak)	1.1	MGD	
Centrate Flow (Average)	0.9	MGD	
Design Surface Area NH ₄ Load	2.66	gN/m²/day	
Total Media Fill	36.5	%	
Seed Media	5	%	

Average Centrate Characteristics			
Parameter	Value	Units	
TKN	1,300	mg/L	
NH4-N	1,200	mg/L	
Alkalinity	3,900 🔇	b/L	
BOD ₅	130	mg/L	
TSS	300	mg/L	

Project Overview

Scope

- Convert one Centrate and RAS Reaeration Basin (CaRRB) into two deammonification basins
- Treat 100% of the centrate to the following goals:
 - 80% ammonia oxidation
 - 70% TIN reduction
- AnitaMOX[™] MBBR was selected

Plastic Carrier Media

Sidestream Deammonification: Retrofit of CaRRB Reactor

Retrofitting & Repurposing Existing CaRRB

Startup Sequence

- 1. Load unseeded media into reactors
- Pump Primary Effluent for 4-6 week duration
- 3. Load seeded media into reactors
 - Temporary heating of centrate

Startup Sequence: Initial Seed at 5%

Startup Sequence

Goal:

- Keep ammonia concentration between 250-350 mg/L
- Keep nitrite below 60 mg/L
 - High nitrite is inhibitory to anammox
- Slowly increase centrate flow
- Slowly decrease duration of air OFF; more air ON

Startup Sequence

- Phase 1 Batch feed with intermittent aeration (goal: NH3-N = 350 mg/L; end after 1-2 days)
- Phase 2 Continuous feed with intermittent aeration
- Phase 3 Increasing the feed load with reduction of air-OFF periods (keep NO2-N < 40 mg/L)
 Phase 4 – Increasing/maintaining the feed load with

continuous aeration

Keys to Success

- Daily meetings to discuss analysis and make process decisions
- Trending is key to monitoring the process, just looking at a snapshot doesn't give the whole picture
- NH3-N primary parameter for process control
- Don't go backwards on air ON/OFF durations

Modes of Operation

- Aeration Control
- Intermittent Aeration
- Continuous Aeration
 - Airflow input value
 - DO control
 - pH control*
- Idle Mode (maintenance)

Startup Summary

- Unseeded media loaded
 in mid-June 2017
- Loaded Seeded Media mid-August 2017
- Switched to continuous aeration – October 9, 2017
- 100% of Centrate Flow to Deammonification – November 21, 2017

Performance During Startup

Challenges

- "Projectile" Media
- Foam
- Centrate Dilution
- Variable Centrate Flows

Takeaways

- Anammox is a proven technology for sidestream treatment
- Retrofitting and repurposing existing infrastructure is huge cost advantage
- Metro realizing significant cost savings on aeration
- Minimal seed percentages will continue until more "biofarms" are on line
- Startup to full loading is achievable within 3 months
- Anammox seems relatively robust against perturbations upstream
- Retrofits always have their downsides

