

## Resource Recovery Your Path to Doing More with Less

Brandt Miller, PE and Dwayne Amos, PE

"The resource recovery paradigm considers that most, if not all, materials in wastewater can be recovered and commoditized" – WE&RF





## Recovery of Nutrients

#### **Two Primary Drivers**











Recovery of Nutrients

#### The fate of phosphorus







#### Effluent Limit TP = 0.08 mg/L

### Precipitation

#### Biosolids

Recovery of Nutrients

#### The fate of phosphorus



Effluent Limit TP = 0.08 mg/L



#### **Nutrient Recovery**



Biosolids





## **Two Reliable Means of Removing Phosphorus**



#### **Chemical Removal**

Metal salt binds with phosphorus – removed in biosolids





#### **Struvite crystallization**

Using a specially designed reactor to form struvite crystals that can be harvested





#### **Struvite Formation Basics**



# Sidestream Can Contribute a Significant Nutrient Load



#### Benefits of removing nutrients in the sidestream:

- Concentrated nutrient load
- Small flow (1% of Qin typ.)
- Can often reuse existing infrastructure to reduce costs
- Usually economical to meet stringent effluent limits when sidestreams contribute:
  - ≥15% of the influent TN ≥20% P load



## **Commercial options for struvite recovery**

| Name of<br>Technology                                   | Ostara Pearl®                         | AirPrex                               | Multiform Harvest                               | Phospaq                            | NuReSys                         |
|---------------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|------------------------------------|---------------------------------|
| Name of product<br>recovered                            | Crystal Green ®                       | struvite fertilizer                   | vite fertilizer struvite fertilizer struvite fe |                                    | BioStru®                        |
| % efficiency of<br>recovery from<br>sidestream          | 80-90% P<br>10-40% NH <sub>3</sub> -N | 80-90% P<br>10-40% NH <sub>3</sub> -N | 80-90% P<br>10-40% NH <sub>3</sub> -N           | 80% P<br>10-40% NH <sub>3</sub> -N | >85% P<br>5-20% N               |
| Product<br>marketing/resale                             | Ostara                                | N/A                                   | Multiform Harvest                               | N/A                                | N/A                             |
| # of full-scale<br>installations in<br>design/operation | 14                                    | 8                                     | 3                                               | 9                                  | 9                               |
| Configuration                                           | Post-dewatering                       | Pre-dewatering                        | Post-dewatering                                 | Post-dewatering                    | Post- and/or Pre-<br>dewatering |

#### **Observed benefits with phosphorus recovery**







Reduction of operating costs

Operation and Maintenance



### **Nansemond Treatment Plant (NTP)**

- Hampton Roads Sanitation District (HRSD), Suffolk, VA
- 30 mgd facility
- Treated effluent discharges into the James River, ultimately into the Chesapeake Bay
- 5-Stage BNR Process
- Installed Ostara Pearl process



Recovery of Nutrients

### Struvite recovery was most favorable treatment option

| Cost Description                | Do Nothing  | Side Stream<br>Chem Trmt | Ostara    |
|---------------------------------|-------------|--------------------------|-----------|
| Total Annual Savings            | 0           | 0                        | 528,000   |
| Total Annual Operating<br>Costs | (392,000)   | (429,000)                | (91,000)  |
| Net Annual Costs                | (392,000)   | (429,000)                | 437,000   |
| Capital Costs                   |             |                          | 3,926,000 |
| Net Present Worth<br>@ 10 years | (3,027,000) | (3,313,000)              | (552,000) |
| Net Present Worth<br>@ 20 years | (4,885,000) | (5,346,000)              | 1,520,000 |

## Recovery of Energy





## **Generating Value from Biogas**

| Technology                          | Energy Type      | Pathway                                                              | Markets                                                                                                    |
|-------------------------------------|------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Combined<br>Heat and<br>Power (CHP) | Electricity/Heat | <b>Offset</b> electrical and thermal energy                          | <ul> <li>Electricity</li> <li>Natural Gas</li> <li>Renewable Energy Credits<br/>(RECs)</li> </ul>          |
| Boilers                             | Heat             | Offset thermal energy                                                | Natural Gas                                                                                                |
| Renewable<br>Natural Gas<br>(RNG)   | Fuels            | <b>Sales</b> of renewable fuels (typically in transportation sector) | <ul> <li>Compressed Natural Gas<br/>(CNG)</li> <li>RIN Market</li> <li>Low Carbon Fuels Markets</li> </ul> |

## What is RNG?

- RNG is biogas treated to Natural Gas standards
- RNG and Natural Gas have the same chemical makeup after treatment

| Parameter       | Typical Digester<br>Gas | Typical<br>Requirements |
|-----------------|-------------------------|-------------------------|
| Moisture        | Saturated               | Dry                     |
| Carbon Dioxide  | 35% - 50%               | 3% Max                  |
| Methane         | 55% - 65%               | 98%                     |
| Oxygen-Nitrogen | ~4%                     | 0.2%                    |
| H2S             | 4000ppmv                | 4ppm                    |
| NH4             | Varies                  | Non Detect              |
| Total Si        | Varies                  | Non Detect              |
| VOC             | 0-500PPMV               | Non Detect              |
| BTU             | 600BTU/SCF              | 980BTU/SCF              |

### **RNG Drivers**

- Cities moving toward CNG vehicles
- Political and environmental incentives to use renewable fuels
- "<u>Off-site</u>" utilization lowers site emissions

## *"Strong market for renewable transportation fuels"*

Tampa turns to natural gas to fuel city's fleet







Recovery of Energy



#### Is there a Demand?



Year



#### Is there a market?

#### D3 and D5 RIN Trading Prices (\$/MMBTU)



—D3 RIN —D5 RIN



#### Eastern Municipal Water District, CA Moreno Valley RWRF Alternatives Analysis

MVRWRF Net Revenue Generation - 20 Yr NPV





### **RIN Market Challenges**

- Cellulosic biofuels (D3) expected to continue to lag mandated levels.
- EPA is using their waiver authority to reduce requirements for obligated parties.
- Next year's RVOs adjustments are largely "unknown" during the current year.
- Waivers and RVOs are destabilizing the market.
- "Political Climate"





## **Long Term Biogas Utilization Planning**



Recovery of Energy

Flexible Long Term Road Map



## Overview of a 1 MGD Advanced Water Treatment Demonstration Facility for Managed Aquifer Recharge









- Provides wastewater • treatment for 17 localities (250 mgd treatment capacity)
- Serves 1.7 million people • (20% of all Virginians)

Major facilities include the following treatment plants:

- 1. Atlantic, Virginia Beach
- 2. Chesapeake-Elizabeth, Va. Beach 3. Army Base, Norfolk
  - 9. York River, York County
- 4. Virginia Initiative, Norfolk 5. Nansemond, Suffolk
- 6. Boat Harbor, Newport News
- 7. James River, Newport News
- 8. Williamsburg, James City County 10. West Point, King William County
- 11. Central Middlesex, Middlesex County 12. Urbanna, Middlesex County
- 13. King William, King William County

Serving the Cities of Chesapeake, Hampton, Newport News, Norfolk, Poquoson, Portsmouth, Suffolk, Virginia Beach, Williamsburg, and the Counties of Gloucester, Isle of Wight, James City King and Queen. King William, Mathews, Middlesex and York



## Advanced Water Treatment for Beneficial Recycle





### **Drivers For SWIFT Program**

#### SWIFT concept - replenish the aquifer with purified water to:

Recovery of Water

- Reduce nutrient discharges to the Chesapeake Bay
- Provide a sustainable supply of groundwater
- Reduce the rate of land subsidence (relative SLR)
- Protect the groundwater from saltwater contamination
- Integrated Planning Wet weather sewer overflows IAW Federal enforcement action
- Managing wastewater operations cost effectively in a fluid regulatory environment



#### **SWIFT Program Timeline**



- **Phase 1 Concept Feasibility**
- Phase 2 Concept Development & Pilot Testing
- **Phase 3 Concept Demonstration**
- **Phase 4 Facility Plan Development**
- **Phase 5 Implementation Plan**

**Phase 6 - Full Scale Facility Implementation** 



### Phase 1 – Concept Feasibility



### Modeled Potomac Aquifer Water Levels With And Without SWIFT







#### **Managed Aquifer Recharge**



- Travel time >100 years?
- Soil aquifer treatment, blending with existing groundwater
- Human health criteria still apply due to drinking water designation of aquifer
- Geochemical compatibility is required

# Phase 2 – Concept Development and Pilot Testing





# Water Quality Goals – Pathogen Inactivation



| Parameter       | Floc/Sed<br>& BAF <sup>1</sup> | Ozone <sup>2</sup> | BAF &<br>GAC | UV <sup>3</sup>  | CI2 | SAT | Total   |
|-----------------|--------------------------------|--------------------|--------------|------------------|-----|-----|---------|
| Enteric Viruses | 2                              | 3                  | 0            | 4                | 0-4 | 6   | 12-19   |
| Cryptosporidium | 4                              | 0                  | 0            | 6<br>(4 Allowed) | 0   | 6   | 14-16   |
| Giardia lamblia | 2.5                            | 1.5                | 0            | 6<br>(4 Allowed) | 0   | 6   | 12.5-16 |



## **Advanced water treatment alternatives**









## **MF/RO/UVAOP Pilot Systems**





#### **SWIFT Research Center**



#### **Phase 3 – Concept Demonstration**





## **SWIFT Research Center Objectives**

- 1 MGD Aquifer Recharge Flow
- Meets Primary Drinking Water Standards
- Compatible with the receiving aquifer
  - No clogging
  - No mobilization of aquifer constituents

Recovery of Water

- Define permitting requirements for full scale
- Staff/operator training
- Public education



#### Location of Facility within Nansemond TP Site





## Schedule

- Met the aggressive design schedule. Pushed back from EPA backstop date
- Contractor/vendors/client/Jacobs/early decisions.
- Locked in process design
- Use of 3D tools effective for faster decision making







#### **Research Center Treatment Approach**





#### **HACCP - Critical Control Point Selection**





## **BIM Design Collaboration**







### **Rapid Model Development using Revit & BIM**





### **Public Engagement**





## **Virtual Reality**







#### **Augmented Reality APP**



#### **HRSD SWIFT Groundbreaking**

Go on an interactive journey through the SWIFT Research Center!



Install the "HRSD SWIFT Groundbreaking" app. Scan the SWIFT Research Center image found on the back of the USB. Download the digital content and interact.

Find more SWIFT information preloaded on the USB!



## Recovery of Water

#### Construction









## Where is SWIFT going?

- One MGD demonstration facility (Spring 2018)
- Seven Major WWTPs for a combined flow of 120MGD
- Full implementation planned by 2030





### **Phase 4 – Facility Plan Development**

Hazen

\* Estimated Timeline



#### Facility Planning Elements:

- Right size SWIFT treatment
- Evaluate exiting treatment upgrades
- Pursue real estate needs
- Understand capital and operational costs

#### **Phase 5 – Implementation Plan**



\* Estimated Timeline





## **Phase 6 – Full Scale Facility Implementation**



\* Estimated Timeline



Each project includes procurement, design, construction, and start-up phases.



#### **Questions?**



#### Contact



Brandt Miller, PE Associate Wastewater Practice Lead for Texas bmiller@hazenandsawyer.com (469) 250-3784



Dwayne Amos, PE Associate Vice President Design Project Manager for SWIFT Research Center damos@hazenandsawyer.com (757) 497-0490



## Recovery of Digester Gas

- Easily recovered and utilized
- Multiple utilization technologies
- Renewable energy source





Hazen

## How much RNG can we make?

#### Rule of Thumb:

15,000 - 20,000 gasoline gallon equivalents / year / MGD

### 10MGD - 150,000 -200,000 GGE/yr

- 15-20 Refuse Trucks
- 50-70 Police Cruisers
- 10-20 City Transit Busses
- 300-400 Personal Vehicles



#### Lots of Energy!!!!!!





#### **RNG Pathways: There are Challenges**

