Overwhelmed and Overloaded? Do More with Less by Increasing Capacity and Resiliency with IFAS

Mark Maroney, P.E.

Texas Assoc. of Clean Water Agencies January 31, 2020

What is IFAS?

Integrated Fixed Film Activated Sludge

 Hybrid Process: Fixed Film + Suspended Growth
 Immersed media added to conventional activated sludge
 Increases biomass inventory

Integrated Fixed-Film Activated Sludge (IFAS) Process

Biomass Growth on Media Courtesy: Headworks, Inc.

To Be Clear... IT IS NOT HONEYCOMB CEREAL BITS!!!!

Colorado IFAS Plant

IFAS Media Retention Screens

Why We Looked At IFAS

- Allison WWTP biologically overloaded
- Existing plant not designed for TCEQ added ammonia nitrogen limit of 12 mg/l
- Plant has trouble with solids loadings and spikes due to meat packing plant discharge

ALLISON WWTP DESIGN FLOW

- •Original Const. at 2.0 MGD: **1966**
- •Expansion to 5.0 MGD: 1984
- •Rated Capacity:

Average Daily: 5.0 MGD

2-Hr. Peak: 15.0 MGD

•Current Avg. Daily Flow: 2.8 MGD

Allison Design Basis

	Original		
	<u>Design</u>	<u>2019</u>	
BOD5	230 mg/l	273 mg/l	19% Higher
TSS	230 mg/l	308 mg/l	34% Higher
ΤΚΝ		58 mg/l	

(MAX LOADINGS BOD5 940 mg/l – TSS 1,400 mg/l

TCEQ Discharge Parameters

	<u>Then</u>	Now
BOD5	20 mg/l	20 mg/l
TSS	20 mg/l	20 mg/l
NH3-N	none	12 mg/l

ALTERNATIVES CONSIDERED

- 1: Add Aeration Basin Capacity (Single-Stage Nitrification)
- 2: Retrofit Existing Aeration Basins to IFAS System
- 3: Add Aeration Basins and Secondary Clarifiers (Two-Stage Nitrification)
- 4: Add Primary Clarifiers
- 5: Add Equalization Basin

Alternative Comparison

Alternative	Advantages	Disadvantages
1 – New Aeration Basins for	✓ Allows a phased approach from 12 to 3 mg/L	x Less buffer for shock loads without changing
Additional Capacity	✓ Same operation as existing process	MLSS
(Single-Stage Nitrification)	✓ Increases capacity of aeration basins	x Additional land area
	✓ Lowest capital cost	x Requires modification to existing aeration
	 Allows a phased approach 	basins – structural condition
2 – Retrofit Existing Aeration	✓ Utilize existing infrastructure	x More aeration required
Basins to MBBR/IFAS	 Operationally stable/robust environment for autotrophic bacteria in varying organic and ammonia loading 	x Maintaining operation during construction
	✓ Allows for independent control of nitrifiers	x Highest capital cost
3 – New Aeration Basins and	 Additional buffer against shock loads 	x Additional equipment to maintain
Secondary Clarifiers (Two-	 More stability of ammonia oxidizing bacteria 	x Operation/process different from existing
Stage Nitrification)	(AOBs) than single-stage	x Additional land area
	✓ Allows a phased approach	x Odorous sludge produced by primary
	 Primary sludge favorable thickening and 	clarification
4 – New Primary Clarifiers	dewatering characteristics	 x Higher sludge production – solids handling modifications
		x Additional land area
	✓ Could allow for isolation of toxic loadings	x Not a viable long-term solution without
		additional aeration basin capacity
		x Odors generated from storage of influent
5 – New Equalization Basin		x Instrumentation to determine when to divert
		flows to EQ basins
		x Additional land area

IFAS Advantages

Lowest capital cost of the alternatives ✓ Allows a phased approach ✓ Increase treatment in same reactor volume Resistance to shock loads and washouts Improve settling and clarifier performance Operationally stable/robust environment for autotrophic bacteria in varying organic and ammonia loading

EXISTING IFAS FACILITIES VISIT (City Staff, Consultants and Equip. Reps)

- •Metro Denver WWTP Denver, Co.
- •Williams Monaco WWTP Colorado
- •Broomfield WWTP Broomfield, Co.
- •Crow Creek WWTP Cheyenne, Wy
- •Dry Creek WWTP Cheyenne, Wy

Feb. 2019

EXISTING AERATION BASINS

IFAS DESIGN CONSIDERATIONS

- Upstream ¼" screening critical (bar screens)
- Normally operates a higher DO levels
- Coarse bubble aeration recommended to keep media in suspension
- Media retaining screens required to keep media in the aeration basins
- Basin level monitoring recommended due to potential screen blinding
- Possible issues with foaming

ANOTHER DAY IN PARADISE

QUESTIONS?