

CITY OF CORPUS CHRISTI Seawater Desalination Program

TACWA January 27, 2023

WATER SUPPLY RELIABILITY

October 4, 2011

The value of a truly reliable water supply to a local economy cannot be overstated

SURFACE WATER SUPPLIES

PROJECT GENESIS

• 2011 – 2013 drought

- Collaborative effort of City of Corpus Christi and key Stakeholders to examine economic feasibility of seawater desalination
 - Corpus Christi Regional Economic Development Corporation (CCREDC)
 - San Patricio Municipal Water District (SPMWD)
 - Coastal Bend Industries
 Association (CBIA)

PROJECT OUTLINE: Development Stages

1 Local Funding PHASE Industrial Seawater Desalination 2015-2017 Economic Feasibility Go/No-Go

SWIFT #1 6

- Ш S Confirm/Define PHA: Project
 - **Project Siting**
 - Permitting
 - Outreach

2017-2023

SWIFT #2 Procurement Financial Closing Design, Construction, Commissioning

2

PHASE

2023-2028

CONSIDERATIONS FOR A SEAWATER DESALINATION PROJECT

PHASE 1-A OBJECTIVES

- Assess economic & technical feasibility
 of SWD in Corpus Christi
- Define a project that reduces the water supply risk and regional system drought vulnerability

PHASE 1-A DECISIONS/OUTCOMES

- Preliminary plant siting
- Preferred plant capacities
- Desired water quality
- Preferred water distribution strategy
- Preferred Project ownership

- Project financing (SWIFT 1 & 2)
- Project procurement
- Planning-level cost estimates
- Drought Surcharge Exemption Fee, large volume user participation
- Outreach

PROJECT OUTLINE: Development Stages

1 Local Funding Ш S Industrial PHA Seawater Desalination 2015-2017 Economic Feasibility Go/No-Go

SWIFT #1 6

- Ш S Confirm/Define PHA Project
- **Project Siting** 2017-2023
 - Permitting
 - Outreach

SWIFT #2 Procurement Financial Closing Design, Construction, Commissioning

2

PHASE

2023-2028

PHASE I-B OBJECTIVES Advance Project Planning, Reduce Unknowns, Reduce Risk

- Confirm Desired Project Capacities
- Select sites
- Outreach
- Water quality characterization
- File Owner's permit applications
- Refine detailed cost models
- Achieve readiness to proceed ["Trigger Ready"]

PHASE 1-B SITING

Screening Parameters

- Social & Environmental
- Tract
- Water Quality
- Intake
- Discharge
- Product Water Delivery
- Power

Evaluation Parameters

- Environment
- Cost
- Diffusion Modeling
- Water Quality
- Surveys
- Permitting Considerations

PROJECTS DEFINED

Average Production Capacities in MGD				
Production Phase	Average Daily Production			
Inner Harbor Ship Channel Plant				
Initial Capacity	20			
Ultimate Capacity	30			
La Quinta Channel Plant				
Initial Capacity	20			
Expandable Capacity	30			
Ultimate Capacity	40			

PERMITTING

- Texas Commission on Environmental Quality (TCEQ)
 - Water Rights Applications
 - Inner Harbor Granted (2022)
 - TPDES Applications in Technical Review
- US Corps of Engineers (USACE)
 - Defining 10/404 Permitting Requirements

CONSIDERATIONS FOR A SEAWATER DESALINATION INTAKE Mapping Sensitive Species & Ecosystems

- Ecosystems and Species mapping during the siting phase
- No oyster reefs, no critical habitat for federally listed species within 2,500ft for intake or discharge zones.
- Hardened shorelines can be habitats, too.

CONSIDERATIONS FOR A SEAWATER DESALINATION INTAKE

Mitigating Impingement and Entrainment

- Wedge-wire screen narrow openings (2mm to 3mm wide)
- Low inlet velocities (<0.5fps)

CONSIDERATIONS FOR A SEAWATER DESALINATION INTAKE

Targeting Sustainability

- Specifically targeting stable water quality with optimal characteristics
- Sufficient depth to reduce impacts from any spills in the water body
- Sufficient depth to mitigate impacts to seagrasses

Water Quality

 No concerns with heavy metals or other parameters after 1-year of sampling.

Desalination Plant Intake - Beckton, U.K.

CONSIDERATIONS FOR A SEAWATER DESALINATION DISCHARGE

- Permitting Requirements
 - White Paper
- Jet Diffusion
- ADCPs & Dispersion
 Modeling Near Field and
 Far Field
- Temperature < 1.5°F above Ambient

CONCENTRATE MIXING AND DISPERSION – NEAR FIELD

Source: Sustainable Management of Desalination Plant Concentrate; Voutchkov N., International Desalination Association World Congress, 2019.

SALINITY TOLERANCES

Common Name	Scientific Name	Optimum Salinity	Optimum Salinity Range (Salinity Maximum) (ppt)		
		Larvae	Juveniles	Adults	
		10-35	10-30	10-3	
American Oyster	Crassostrea virginica	(39)	(44)	(44	
		24-36	10-20	24-3	
Brown Shrimp	Farfantepenaeus aztecus	(40-69)	(45)	(45	
		0.4-37	2-15	>2	
White Shrimp	Litopenaeus setiferus	(N/A)	(41)	(40	
				20-4	
Mysid Shrimp	Americamysis bahia			(25)	
		12-36	2-21	<10-3	
Blue Crab	Callinectes sapidus	(43)	(N/A)	(6)	
		15-25	<4-34	>1	
Stone Crab	Menippe sp.	(27)	(40)	(N//	
		0-66	0-66	0-4	
Gray Snapper	Lutjanus griseus	(67)	(67)	(67	
		5-25	0.3-44	0.3-4	
Sheepshead	Archosargus probatocephalus	(45)	(45)	(45	
		20-35	8-25	20-2	
Spotted Seatrout	Cynoscion nebulosus	(50)	(48)	(45	
		15-36	0.5-20	6-2	
Atlantic Croaker	Micropogonias undulatus	(N/A)	(40)	(70	
		9-34	9-26	9-2	
Black Drum	Pogonias cromis	(36)	(80)	(80	
		8-36	20-40	20-4	
Red Drum	Sciaenops ocellatus	(50)	(50)	(50	
		10-30	2-37	20-3	
Southern Flounder	Paralichthys lethostigma	(N/A)	(60)	(60	
		0-30	0-32	0-12	
nland Silverside	Menidia berylllina	(2-8)	(N/A)	(8-11	
ources:					
Patillo et al. (1997)		Guillory et al. (2001)			
Baggett et al. (2014)		Serrano (2008)			
Gulf Marine States Fisheries Commission (2012)		Odell et al. (2017)			
Hijuelos et al. (2016)		EPA (2009)			
Saoud and Davis (2003)		Phillips et al. (2012)			

Doerr et al. (2016)

Salinity Tolerance of Select Fish and Crustacean Species in Corpus Christi Bay Area

Optimum

Maximum

NATURAL SALINITY VARIATIONS CORPUS CHRISTI BAY

TCEQ SWQMS 13407

PROJECT OUTLINE: Development Stages Phase 2

1 PHASE 5-2017 201

Local Funding

Industrial Seawater Desalination

Economic Feasibility

Go/No-Go

SWIFT #1

m

2017-2021

- PHASE Confirm/Define Project
 - **Project Siting**
 - Permitting
 - Outreach

SWIFT #2 Procurement **Financial** Closing Design, Construction, Commissioning

N

PHASE

2021-2026

PHASE 2 MILESTONES

- Land Acquisition
- AEP Preliminary Engineering
- Continued Outreach
- Receive Owner's Permits (TCEQ & USACE)
- Power Infrastructure Improvements
- Prequalification of Contractors (RFQ)
- Procurement (RFP)
- Financial Close
- Design / Construction / Commissioning

OUTREACH

- Desal Mayor-to-Mayor Meetings
 - Port Aransas
 - Portland
 - Rockport
 - Gregory
 - Fulton
 - Aransas Pass
- Legislative Delegation
- Council Updates
- Business Groups
- Proactive Outreach to Environmental Stakeholders
- Town Halls, Public Meetings

CITY OF CORPUS CHRISTI Seawater Desalination

And the second s

desal.cctexas.com

20MGD Desalination Plant Expandable to 30MGD

REVERSE OSMOSIS DESALINATION

CORPUS CHRISTI BAY VOLUME 282,000,000,000 Gallons (865,513 ac-ft)

- Inflows
 - Rain & Runoff
 - River water
 - Tidal water
 - Municipal/Industrial Discharges

- Outflows
 - Evaporation
 - Outflow to ocean
 - Tidal water

CORPUS CHRISTI BAY DYNAMICS

State law requires "Best Value" determination

Public-Private Partnership (P3) Design-Build (Fixed Price) Progressive Design-Build Design-Bid-Build

Operations may be part of the procurement contract, or not.

PROJECT COSTS

Inner Harbor Plant 20 MGD Expandable to 30 MGD

Capital Cost (\$222M) Construction = \$164M Non-Construction = \$26M Contingencies = \$32M

Operations & Maintenance Costs

\$16M annually (includes treatment to potable)

PROJECT FINANCING

Water Supply Development Funds - \$0.05/kgal (\$1.6M/year) Large Volume Users' Drought Surcharge Exemption Fee - \$0.25/kgal (~\$3M to \$5M / year)

TWDB State Water Implementation Fund for Texas (SWIFT)

- Subsidized State Loan Interest @ < 2%
- 30 Year Term

COST OF TREATED WATER

\$3.50 to \$4.00 per thousand gallons

- Includes substantial contingency estimates
- Work continues to refine the cost estimates and will continue through establishment of a contract for design and construction with a private contractor.
- This is a supplemental supply, so only a portion of the regional water supply will be developed at this rate.

COST OF TREATED WATER

