Hazen

Real World Sidestream Phosphorus Recovery Performance – Comparison of Operational Performance and Benefits

TEXAS ASSOCIATION OF CLEAN WATER AGENCIES

JANUARY 27, 2023

Introductions

Ana Garcia, PE

- Operations Manager for San Antonio and Corpus Christi
 offices
- With Hazen since 2007
- Over 15 years of experience in all phases of water and wastewater projects, including master planning, preliminary and detailed design, permitting and bidding, and construction management

Scott Hardy, PE, PMP

- South Central Region Biosolids Practice Leader
- South Central Region Project Management Committee
 Member
- With Hazen since 2006
- Managed more than 25 wastewater solids process evaluation and design projects.
- Served as project manager and technical advisor the detailed design of nutrient recovery systems

Hazen

Hazen by the Numbers

2011

2022

Embracing the New Resource Management Paradigm

Trapped Nutrient Resources

Anaerobic Digestion:

- 1. Soluble Mg²⁺ present
- 2. Soluble NH₄⁺ and PO₄³⁻ released from biomass
- 3. CO₂ stripped out of solution
- 4. pH rises
- 5. Struvite precipitates

$$Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O \rightarrow MgNH_4PO_4 \bullet 6H_2O$$

Converting a Problem to a Resource

Operations, Maintenance & Financial Benefits

- Minimize nuisance scaling
- Reduce pipeline cleaning
- Generate nutrient product
- Reduce chemical costs
- Improve dewatering

- Reduce sludge hauling costs
- Increase treatment capacity
 - Reduce P recycle load
 - Unlock tank/pipeline volume

Case Study #1:

Gwinnet County Department of Water Resources F Wayne Hill Water Reclamation Facility

Atlanta

F Wayne Hill WRC

- 60 mgd WRRF
- Influent TP ~ 9 mg/L
- 0.08 mg/L TP Effluent Limit
- Bio-P and Chemical Trim for P-removal

Background Struvite & Phosphorus Issues

2009

Replaced Bioxide with $Mg(OH)_2$ for collection system odor control

- Resulted in struvite formation in centrate lines, centrifuges, digester complex
- High soluble Mg content in digester very low PO₄-P in centrate

2012

Started accepting WAS from 22 mgd Yellow River Bio-P plant

- Increased P load
- Increased recycle P
- Increased struvite formation

Nutrient Recovery Facility: WASSTRIP[®] + Ostara Recovery

Startup July 2015

How does WASSTRIP® help?

WASSTRIP[®] Tank

- Inner tank:
- 98,000 gallons
- Constant Volume
- 2-4 hr HRT
- Outer tank:
- 280,000 gallons
- Elevation Varies
- < 6 hr HRT

Ostara Reactor Influent

Ostara System

WASSTRIP® Performance Data

Ostara Feed – PO₄-P

Stream	Average PO ₄ -P (mg/L)		
Filtrate	117		
Centrate	42		
Combined Feed	96		

~25% of Influent TP load diverted to recovery avoiding 5,200 lb/d of struvite

2017 - Ostara PO₄-P Removal & Product Output

2017 Averages: 78% Ortho-P Removal 55,000 lbs product/month

2022 - Ostara PO₄-P Removal & Product Output

Oct. 2022 Averages: 65% Ortho-P Removal 50% Total P Removal 30,000 lbs product/month

Summary

- 1. Reduced alum use 75%
- 2. Optimized Bio-P
- Increased thickened solids
 5.4 → 7.4% TS
- Increased dewatered solids
 22.2 → 23.7%
- Decreased dewatering polymer
 38 → 31 active lb/DT
- 6. No More Struvite Issues
- 7. Requires Monitoring and Adjustment to Optimize Performance

Case Study #2:

Metro Water Recovery Robert W. Hite Treatment Facility

Denver

Robert W. Hite Treatment Facility (RWHTF)

- 220 mgd WRRF
- Influent TP ~ 5 mg/L
- Future Effluent TP Limits

Proactive Nutrient Management

Positioning for the future

• Meet future nutrient limits (0.1 mg TP/L)

CURRENT	г		BNR		LEVEL 3 BNR
Reg. 85		Voluntary Incentive Program	Interim Limits	Ammonia Criteria	Reg. 31/ Barr/Milton TMDL
TIN (mg/L) ⁽¹⁾	15	7.0	7.0	7.0	
TAN (mg/L) ⁽²⁾	-	-	-	2.8	2.8
TN (mg/L) ⁽¹⁾	-	-	-	-	2.0
TP (mg/L) ⁽¹⁾	1.0	0.7	0.7	0.7	0.1
		2019	2027	2032	2037
2015		2020 2025	2030	2035	2040

(1) Annual Median (2) Daily Maximum

Proactive Nutrient Management

Positioning for the future

- Minimize nuisance struvite
- Minimize sidestream load
- Maximize solids treatment capacity

Recovery Technology Evaluation

Driver	Supporting Data		
Break Recycle Loop	Pilot (Ostara & MagPrex) WAS P & Mg Release Pilot Modeling		
Reduce Biosolids Dewatering Costs	MagPrex Pilot WAS P & Mg Release Pilot		
Reduce Struvite Scaling	Modeling		
Control Biosolids Phosphorus Loading on Soils	Modeling		
Maximize Product Recovery	Pilot (Ostara & MagPrex) Modeling		

Evaluation Findings

Nuisance and Recovered Struvite

Evaluation Findings

Sidestream Loads

Evaluation Findings

Dewatering Impacts

Technology	% Cake TS Increase	% Polymer Reduction
Pre-Dewatering	3.7 - 5.0	14 – 18
WASSTRIP [®] with Post-Dewatering	0 - 2.0	1.0 - 10

Business Case Evaluation

Pre-Dewatering Recovery with 1 Reactor: \$8M 20-Year Net Present Value

MagPrex Process Flow

MagPrex Design

Struvite Reactor

- 40 ft diameter
- 70 ft tall
- 378,000 gallons
- 7 to 10 hour HRT
- Consider installing two smaller reactors to allow cleaning
 - Metro had space for only one tank

MagPrex System

MagPrex Performance

- Ortho-P conversion averaging 90%
 - 334 mg/L TP Feed → 17 mg/L TP Effluent

MagPrex Performance

- Struvite Recovery
 - Currently 500 ppd recovery

Size Distribution: 0.2 to 1.0 mm

Effluent Impacts

- North Secondary in EBPR mode since March 2019
- South Secondary in EBPR mode since February 2021
- Annual median total phosphorus < 0.4 mg-P/L

Dewatering Impacts

- 22.5% reduction in polymer demand equating to \$575K/year savings
- Pilot estimated 15% reduction in polymer
- Pilot estimated 2.5% increase in cake solids not realized yet...
- New centrifuges coming online soon

Reactor Interior

During Construction

After Months of Operation

Reactor Interior

Technology is developing and improving reliability and maintenance

Lessons Learned

- Ragging issue with diffusers
 - Influent and Primary Sludge Screening important
- Change to low-profile vertical diffusers
 - Horizontal diffuser breaking under rag load
- Eliminate upper diffusers
 - Metro turned off upper with no process impacts
 - Break from upward lift of lower diffusers and downward force of rags

Conclusions

Nutrient Recovery is a Viable Treatment Option NOW!

- Operational & Financial Benefits
- Minimize nuisance scaling
- Reduce chemical demand
- Reduce impact of sidestream on mainstream
- Regain lost volume and pumping/treatment capacity
- Reduce in sludge quantity and hauling costs
- Offset costs with product sales
- Two viable technologies depending on desired product

"The resource recovery paradigm considers that most, if not all, materials in wastewater can be recovered and commoditized." - WE&RF

Acknowledgements

Contacts

Ana Garcia, PE Scott Hardy, PE, PMP agarcia@hazenandsawyer.com shardy@hazenandsawyer.com