

"Beefing Up" Treatment Capacity and Energy Savings with IFAS and Advanced Aeration Control

July 22, 2022

Presenters:

Murali Erat, P.E., Freese & Nichols, Inc.

Rachel Adkisson, P.E., Freese & Nichols, Inc.

Project Goals

Integrated Fixed-Film Activated Sludge (IFAS) System Overview and

Implementation at Allison WRRF

Advanced Aeration Control System

Conclusion

Permit Discharge Limits:

- Average Daily Flow (ADF): 5.0 MGD
- 2-Hr Peak Flow: 15.0 MGD
- cBOD5: 20 mg/L
- TSS: 20 mg/L
- Ammonia-Nitrogen: 12 mg/L

Beef Processing Facility:

- Average Flow: 0.5 MGD
- BOD: 1,000 2,000 mg/L
- TSS: 1,000 3,000 mg/L
- Ammonia: 100 200 mg/L

Allison WRRF Background

- Industrial Contributor Beef Processing Facility
- High Strength Industrial Discharge
- Frequent Slug Loads of BOD, TSS and Ammonia

• Update to the Surcharge Rate in Pretreatment Program

Domestic vs. Industrial Contribution

Increase Secondary Treatment (Organic) Capacity

Enhance Resiliency of the Biological Treatment Process to Slug and Varying Loads

Improve Process Control

Maintain Compliance

Energy Savings

Influent Characteristics/Design Criteria

- Three-year data

Design Conc.: **Avg + 1 Std. Dev.**

Parameter

BOD

TKN

Influent Design

Concentration

273 mg/L

58 mg/L

Allison WRRF – Existing Secondary Treatment Capacity

Design Basis:

- Average Daily Flow 5 MGD
- Influent TKN 58 mg/L
- Influent BOD5 Conc. 273 mg/L
- Influent Organic Loading 11,362 lb/day
- Effluent Limits (BOD/TSS/NH3-N) 20/20/12

Available Aeration	Additional Aeration Basin
Basin Capacity	Capacity Required
8,264 lb/day	3,098 lb/day

<u>38%</u> Increase in Secondary Treatment Capacity Needed

Allison WRRF: Improvement Alternatives Evaluated

Recommended

<u>Alternative 2:</u> Retrofit Existing Aeration Basins with IFAS

- ✓ No additional basins needed
- $\checkmark\,$ Lowest capital cost alternative
- $\checkmark\,$ Utilize existing infrastructure
- $\checkmark\,$ Provides resiliency to toxic and slug loads
- $\checkmark\,$ Allows phased implementation

Integrated Fixed-Film Activated Sludge (IFAS)

- Addition of fixed film or attached growth media to activated sludge process
- Media provides extra surface area for biomass growth
- Increase organic loading capacity of aeration basins
- Easily retrofitted in existing basins
- Stable under varying organic and ammonia loadings

IFAS System Basic Operation

- Media
- Media Retaining Screens
- Coarse Bubble Diffusers

Allison WRRF – IFAS Implementation

Design Basis

- Average Daily Flow 5 MGD
- Influent BOD 273 mg/L
- Influent TKN 58 mg/L

3,098 lb/day Additional Capacity Required

Allison WRRF – IFAS Implementation

IFAS Installation Site Visits

- Consistent treatment performance reported with IFAS
- Meeting stringent permit limits with IFAS
- Operational management strategies
 - Foam control
 - Media retaining screens
 - Advanced aeration control

IFAS Design Considerations

- Cylindrical "self-cleaning" wedge-wire screens
- Air sparge system below screens to prevent media accumulation ("stacking")
- 0.32 to 0.39-inch openings

IFAS Design Considerations

- Foam can accumulate in basins due to no overflow
- Control methods:
 - Higher freeboard
 - Overflow screens
 - Spray system
 - Surface skimmer

IFAS Design Considerations

Industry Standard	Allison WRRF Design
 Approach velocity Typical max. 30-35 m/hr ↑ approach velocity = ↑ stacking potential 	<mark>~36 m/hr @ peak flow</mark> + Air Sparge ↑ Screen SA (↓ Screen HLR)
 Screen hydraulic loading rate (HLR) Typical up to 24 gpm/sf 	20 gpm/sf
 Freeboard 2-3 feet preferred Foaming 	 1.4 ft @ peak flow + foam suppression spray bar + overflow screens + surface skimmer + high level alarm
 Fill fraction Typical 25-55% 	20%-38%
 Upstream screening requirement 1/4-inch or finer 	¼-inch

Benefits of Aeration Control

- Energy savings
- Process control
- Slug load management
- Compliance

Considerations

- Capital and O&M costs
- Maintenance requirements
- System tuning

Alternatives

Dissolved oxygen-based aeration control ("DO control") Ammonia-based aeration control ("ABAC")

General Arrangement

Dissolved Oxygen (DO)-Based Aeration Control

- Operator sets DO setpoint
- Airflow adjusted to reach desired setpoint
 - Modulating BFV
 - Blower output
- DO set point adjusted as necessary to meet treatment goals during fluctuating loads and seasons

Ammonia-Based Aeration Control (ABAC)

Feedforward and Feedback, Cascade Control

- Operator selects effluent ammonia setpoint
- DO set point based on desired ammonia conc.
- If effluent ammonia > setpoint, DO setpoint increased, airflow increased
- If effluent ammonia < setpoint, DO setpoint decreased, airflow decreased
- Influent ammonia probe used for early detection of slug loads

ABAC-Instrumentation

Ammonia Ion Selective Probe

Hach AISE sc

- Recalibration
- Sensor replacement
- Typ. 1-100 mg/L N range
- Experiences issues for low ammonia (0-2 mg/L N)
- Recommended for <u>inlet</u> of aeration basin where <u>ammonia conc. is high</u>

Ammonia Wet Chemistry Analyzer

Hach AMTAX sc

- Autocalibration
- Reagent replenishment
- Typ. 0.05-20 mg/L N range
- Works well for low ammonia conc.
- Higher capital cost
 - Recommended for <u>end</u> of

aeration basin where <u>ammonia conc. is low</u>

TSS Probe

Hach SOLITAX sc

- Recalibration
- Wiper replacement
- Typ. 0.001 mg/L 50 g/L range
- Needed to measure MLSS in aeration basin

DO Control

- Fewer instruments
- Lower capital and O&M costs
- Less energy savings compared to ABAC
- Lower performance

Meeting DO setpoint ≠ meeting ammonia limit

ABAC

- More instruments than DO control
- Higher capital and O&M costs
- Higher energy savings
- Higher performance
- Proactive process control

Allison WRRF – Proposed Aeration Control System

West Aeration Basins

East Aeration Basins

IFAS

- ✓ Lowest capital Cost alternative
- ✓ Utilize existing infrastructure
- $\checkmark\,$ No additional basins needed
- $\checkmark\,$ Provides resiliency to toxic and slug loads

Advanced Aeration Control

- ✓ Energy savings
- ✓ Improve process control
- \checkmark Enhance resiliency
- \checkmark Proactive slug load management

Project Status

Murali Erat, P.E. Project Manager Freese and Nichols, Inc. <u>Murali.Erat@freese.com</u>

Rachel Adkisson, P.E.

Project Engineer Freese and Nichols, Inc. <u>Rachel.Adkisson@freese.com</u>