

Master Planning for Future Nutrient Limits at one of the Largest Water Recycling Centers in the Nation Ila Drzymala, PhD, PE Jeff Sober, PE, BCEE

September 2022 | TACWA

SAWS operates and maintains three water recycling centers

SAWS just completed a wastewater master plan to determine capital improvement projects needed

01• The future of nutrient removal at SAWS **02.** Projects required to get there OUR 03. Impact to sidestream challenges AGENDA

01. The future of SAWS nutrient removal

The Master Plan determined that phosphorus removal was absolutely needed at Clouse, and possible at Leon and Medio

	Medio C	reek WRC	Leon Creek WRC		Clouse WRC	
	16	MGD	46 MGD		125 MGD	
Parameter	Target	Historical	Target	Historical	Target	Historical
	Value	Range	Value	Range	Value	Range
Total Nitrogen (mg/L)	<u><</u> 10	15-20	<u>N/A</u>	19-21	<u>N/A</u>	21
Total Phosphorus (mg/L)	<u><0.5</u>	2.5-3.0	<u><0.5</u>	3.0	<u><0.5</u>	2.3 - 3.0

First, a model was built, calibrated and refined via dynamic validation and additional stress tests

Seven biological reactor options were screened for additional evaluation

Based on screening, detailed alternatives were evaluated for each individual WRC

• AO w/ Alum

Life cycle costs were developed to determine an overall best value for each facility

SM Clouse – 125 MGD

Cost Factor	CEPT	A/O
30-Year Life Cycle Cost	\$120,130,000	\$91,190,000

Leon Creek – 46 MGD

Cost Factor	Chem Phos Removal	A/O	A20
30-year Life Cycle Cost	\$46,480,000	\$49,890,000	\$124,110,000

Medio Creek – 16 MGD

Cost Factor	MLE w Alum	A20	A2O w S2EBPR
30-Year Life Cycle Cost	\$38,110,000	\$37,560,000	\$38,210,000

Each alternative was evaluated for process impacts and layouts were developed

But adding anaerobic zones isn't the only thing required to prepare:

02. Other projects that are required to get there

First, additional primary clarifier capacity is required

Next, additional organic capacity is required in the first and second stage

Additional aeration basin and settling tank capacity will set the stage for future flows/loads and BNR

Parameter	2020 MM Gap (Firm)	2050 MM Gap (Firm)	
BOD Loading (lb/day)	30,000	96,000	

Improvements to the existing aeration system is required for future capacity, control, and automation

The removal of soluble phosphorus in the liquids stream will increase the phosphorus in the solids stream

This additional phosphorus load will exacerbate existing challenges in the solids facilities and sidestream

03. Impact to sidestream challenges

SAWS operates a standard mesophilic anaerobic digestion process with thickening ahead of digestion and dewatering after

These two centrate streams are laden with soluble phosphorus

Detrimental struvite production can be a major concern in anaerobic digesters

Phosphate harvesting significantly decreases annual alum expense

Decrease in Alum Expense

Net alum decrease with P recovery is 2306 gal/d @ approx. \$1/gal = \$841,690/yr

Struvite harvesting via Ostara is the best option under a life cycle cost evaluation

Ostara

Life Cycle Cost per lb removed over 30 yrs: \$2.61

Magprex Life Cycle Cost per lb removed over 30 yrs: \$2.76

In conclusion, all of these planned projects will put SAWS on the map for phosphorus removal by 2030

Q&A

Ila Drzymala, PhD, PE Jeff Sober, PE, BCEE