
TACWA | September 2020

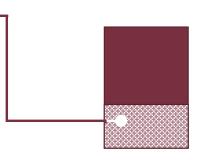
How do you get the salt out of Water?

APPROACHES FOR MITIGATION OF TDS IN TREATED WASTEWATER

Zaid Chowdhury, PhD, PE, BCEE

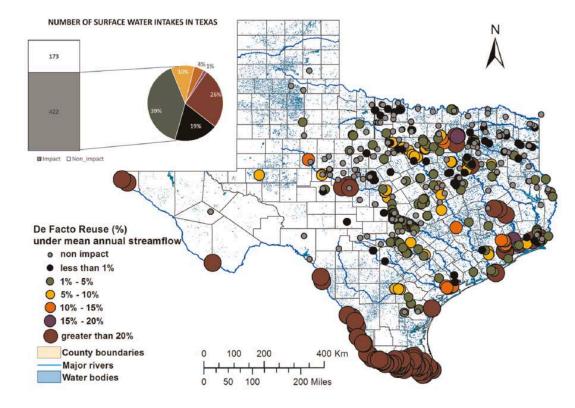
TDS stands for total dissolved solids

Total Solids (TS)


- Volatile
- Fixed

Suspended Solids (SS)

- Retained on 0.45 μ m filter paper
- Fixed or Volatile
- Fixed


Total Dissolved Solids (TDS)

- Also called Filterable Solids
- Passing through 0.45 μ m
- Fixed or Volatile

Discharged treated wastewater ends up contributing to source water TDS for downstream commuinities

De-facto water reuse in TX

Source: Nguyen and Westerhoff, 2019

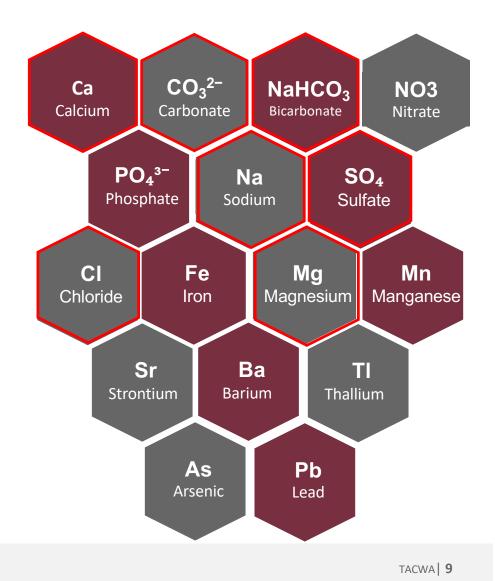
There are two main reasons we should worry about TDS

Too much salt in the water makes it unpalatable (i.e., brackish water) High TDS in treated wastewater could harm water quality in receiving bodies and aquifer

Treatment may be needed for drinking water applications

Treatment may be needed prior to discharge

There is a national secondary drinking water standard for TDS removal


Contaminant	Secondary MCL	Noticeable Effects above the Secondary MCL
Aluminum	0.05 to 0.2 mg/L	Colored water
Chloride	250 mg/L	Salty taste
Color	15 color units	Visible tint
Copper	1.0 mg/L	Metallic taste; blue-green staining
Corrosivity	Non-corrosive	Metallic taste; corroded pipes/fixtures staining
Fluoride	2.0 mg/L	Tooth discoloration
Foaming Agents	0.5 mg/L	Frothy; cloudy; bitter taste; odor
Iron	0.3 mg/L	Rusty color; sediment; metallic taste; reddish or orange staining
Manganese	0.05 mg/L	Black to brown color; black staining; bitter metallic taste
Odor	(threshold odor number)	"rotten egg"; musty or chemical smell
рН	6.5-8.5	Low pH; slippery feet; soda taste; deposits
Silver	0.1 mg/L	Skin discoloration; graying of the white part of the eye
Sulfate	250 mg/L	Salty taste
Total Dissolved Solids (TDS)	500 mg/L	Hardness deposits; colored water; staining; salty taste
Zinc	5 mg/L	Metallic taste

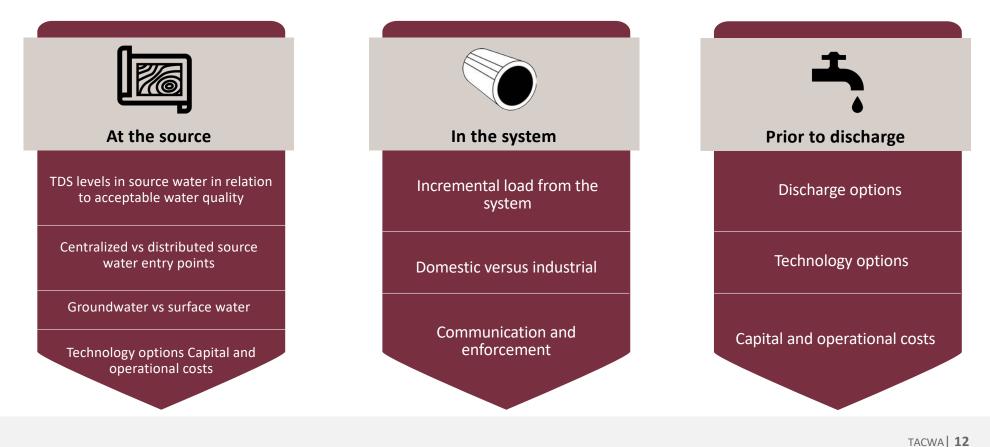
Principles for removing the ions from water include the following

Water softening removes some TDS from hardness

Divalent ions are easier to remove compared to monovalent ions

Reverse Osmossis is needed for the removal of monovalent ions

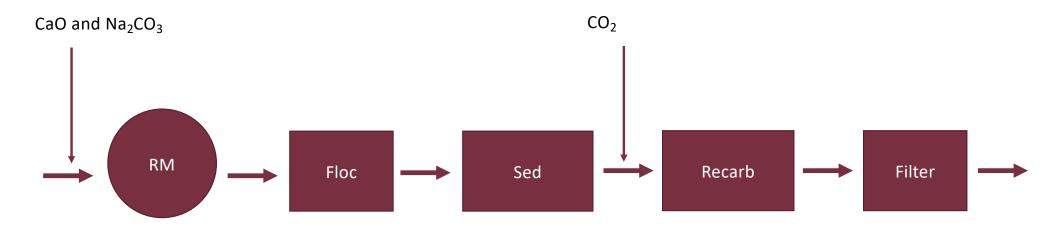
Reducing TDS in treated wastewater discharge must be holistically considered



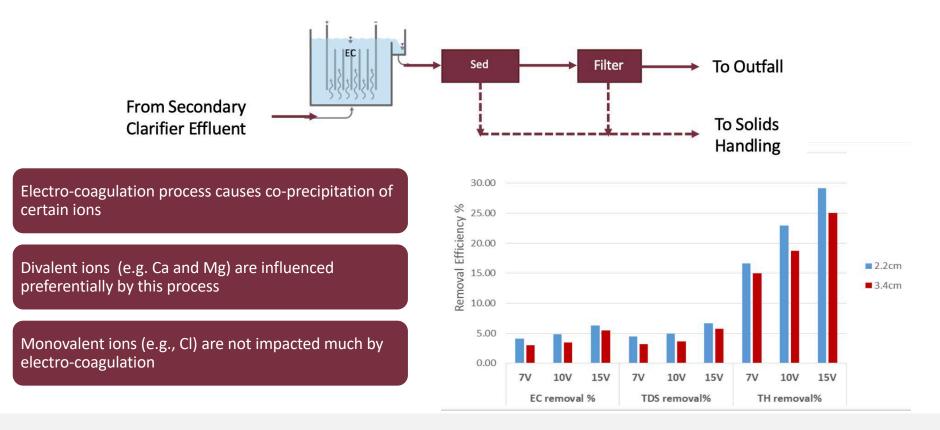
What drives the need for removing TDS?

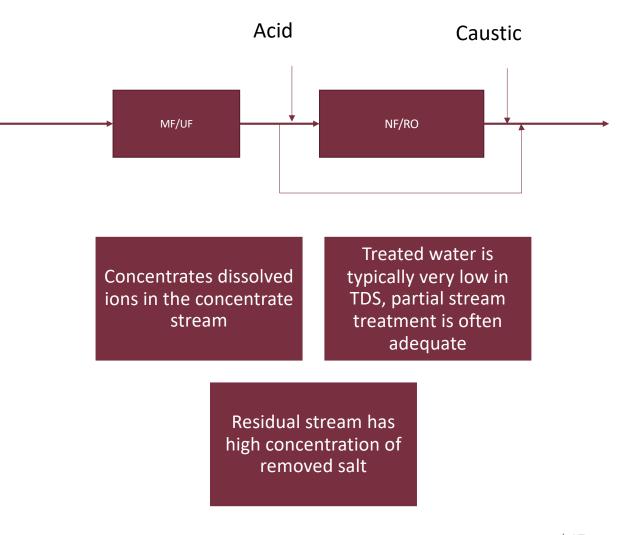
What approaches are available?

Which technologies make practical and financial sense?


TDS reduction reduction can be achieved at the source, in the system, or prior to discharge

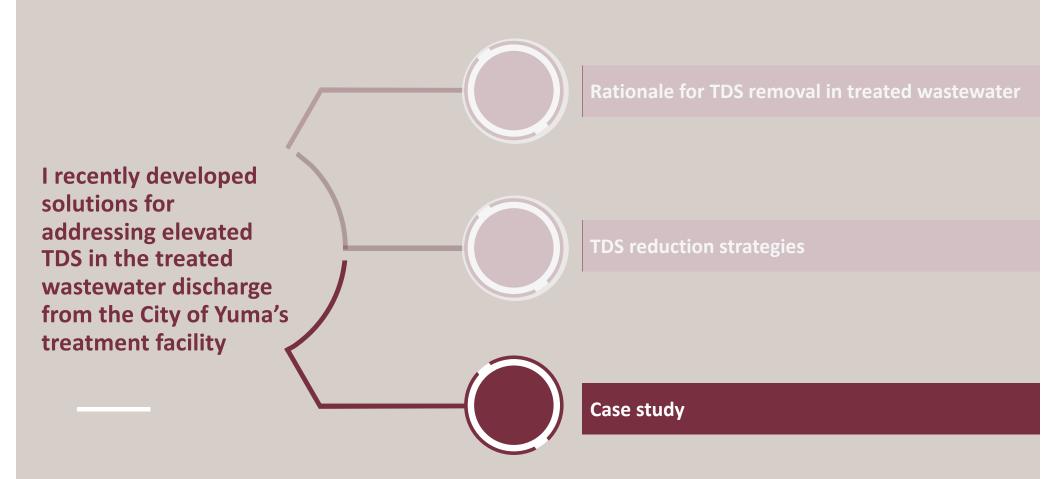
There are many technology alternatives for TDS reduction


Precipitative softening process removes hardness/TDS by getting calcium and magnesium out of the water


Chemical transformation during softening ends up getting some hardness and TDS of of the water

Lime Addition Hardness Precipitate Lime CO_2 $CaCO_{3(s)} + H_2O$ Ca(OH)₂ $2CaCO_{3(s)} + 2H_20$ $Ca(HCO_3)_2$ Ca(OH)₂ $CaCO_{3(s)} + MgCO_3 + 2H_2O$ $Mg(HCO_3)_2$ Ca(OH)₂ MgCO₃ Ca(OH)₂ $CaCO_{3(s)} + Mg(OH)_{2(s)}$ Lime & Soda Ash Addition MgSO₄ Ca(OH)₂ Mg(OH)_{2(s)} Ca(SO)₄ $Na_2(SO)_4$ CaSO₄ Na₂CO₃ CaCO_{3(s)} MgCl₂ Ca(OH)₂ Mg(OH)_{2(s)} CaCl₂ CaCl₂ Na₂CO₃ CaCO_{3(s)} 2NaCl Recarbonation Mg(OH)₂ H_20 CO_2 MgCO₃ MgCO₃ CO₂ H_20 $Mg(HCO_3)_2$ CaCO₃ CO₂ H_20 $Ca(HCO_3)_2$

Electrocoagulation applies electrical current across metal electrodes causing coagulation



Membrane softening achieves TDS removal by directly removing the dissolved ions

Selection of appropriate TDS removal technology depends on many factors

Technology	TDS is primarily caused by divalent ions	TDS is primarily caused by monovalent ions	Liquid residual stream	Solids residual stream	Technology Experience
Precipitative Softening	✓	X	X	\checkmark	\checkmark
Electro Coagulation	\checkmark	X	X	\checkmark	X
Nanofiltration	✓	X	\checkmark	X	\checkmark
Reverse Osmosis	\checkmark	\checkmark	\checkmark	X	\checkmark

The City of Yuma has seven potable wells and one wastewater treatment facility

No treatment of drinking water except disinfection

Widespread use of water softeners within the system

Wastewater is treated with a conventional BNR process

Treated wastewater is discharged to ultimately end up in aquifer

Under order from CDPHE to reduce TDS in treated wastewater discharge

TDS concentration increases as the water passes through municipal use and advanced wastewater treatment

Water and Wastewater Quality

(Samples collected between January and March, 2020)

		Potable Water		Wastewater Influent	
Parameter	Unit	Average	Maximum	Average	Maximum
TDS	Mg/L	268	295	553	611
рН	s.u.	7.5	8.0	8.0	8.6
Alkalinity	Mg/L as CaCO3	141	157	300	348
Calcium	Mg/L	105	121	135	229
Magnesium	Mg/L	35	50	38	60
Hardness	mg/L as CaCO3	407	506	493	819
Sulfate	Mg/L	11	14	13	27
Chloride	Mg/L	10	12	95	135

We evaluated various options to lower TDS in the treated wastewater discharge

At the source

- Distributed wells
- Relatively low TDS in groundwater
- Centralization will be expensive

In the System

- Significant increase through domestic use
- Protracted educational campaign with questionable results
- Long term and expensive solution

After wastewater treatment

- Single location for all water
- Space available to install additional treatment
- Will meet CDPHE requirements in an expeditious manner

Each technology has distinct advantages and disadvantages

Technology	Advantages	Disadvantages	Cost	
Precipitative Softening	Proven technology	Chemical intensive process		
	Solids residual stream	Large amounts of solids will be generated	\$	
	Solids generated could assist stabilization of biosolids			
	Lower equipment cost			
Electro-coagulation	Very little to no chemicals needed	High equipment cost	\$\$\$	
	Residual stream is in solid form that can be disposed similar to the biosolids	Solids are not expected to assist stabilization of biosolids		
Membrane Softening	High degree of process automation	High electricity use	\$\$	
	Ability to turn-down/adjust treatment side stream			
	Lower equipment cost	Liquid brine stream needs disposal via deep well injection		

The main points of our case study include..

There are multiple ways to get salt out of water

Technology selection depends on the make up of the TDS

All TDS removal technologies are expensive

If TDS removal technologies can be avoided by lowering the TDS before waters enter the WWTP then that is the most prudent solution

GARVER

Questions?

ZAID CHOWDHURY, PHD, PE, BCEE ZKChowdhury@GarverUSA.com

September 18, 2020

